Deep learning‐based crop row detection for infield navigation of agri‐robots

Author:

de Silva Rajitha1ORCID,Cielniak Grzegorz1ORCID,Wang Gang2,Gao Junfeng1ORCID

Affiliation:

1. Lincoln Agri‐Robotics Centre, Lincoln Institute for Agri‐Food Technology University of Lincoln Lincoln UK

2. Center of Brain Sciences Beijing Institute of Basic Medical Sciences Beijing China

Abstract

AbstractAutonomous navigation in agricultural environments is challenged by varying field conditions that arise in arable fields. State‐of‐the‐art solutions for autonomous navigation in such environments require expensive hardware, such as Real‐Time Kinematic Global Navigation Satellite System. This paper presents a robust crop row detection algorithm that withstands such field variations using inexpensive cameras. Existing data sets for crop row detection do not represent all the possible field variations. A data set of sugar beet images was created representing 11 field variations comprised of multiple grow stages, light levels, varying weed densities, curved crop rows, and discontinuous crop rows. The proposed pipeline segments the crop rows using a deep learning‐based method and employs the predicted segmentation mask for extraction of the central crop using a novel central crop row selection algorithm. The novel crop row detection algorithm was tested for crop row detection performance and the capability of visual servoing along a crop row. The visual servoing‐based navigation was tested on a realistic simulation scenario with the real ground and plant textures. Our algorithm demonstrated robust vision‐based crop row detection in challenging field conditions outperforming the baseline.

Publisher

Wiley

Subject

Computer Science Applications,Control and Systems Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3