Production of flower‐shaped nanobiocatalysts from green tea and investigation of their peroxidase mimicking activity on the polymerization of phenol derivatives

Author:

Kalayci Berkant1,Kaplan Naime1,Dadi Seyma2,Ocsoy Ismail3,Gokturk Ersen1ORCID

Affiliation:

1. Department of Chemistry Hatay Mustafa Kemal University Hatay Turkey

2. Department of Nanotechnology Engineering Abdullah Gül University Kayseri Turkey

3. Department of Analytical Chemistry Faculty of Pharmacy, Erciyes University Kayseri Turkey

Abstract

AbstractEnzyme catalyzed reactions are known to be environmental friendly and easy method for many applications. However, utilization of enzymes in a variety of reactions is strictly limited due to their high cost, instability in aqueous solutions, denaturation in organic solvents and high temperatures. For this reason, it is important to discover new generation catalyst systems indicating enzyme‐like catalytic activity. Here, we report hybrid organic–inorganic flower‐shaped green tea‐Cu2+ nanobiocatalyst synthesized from green tea extract as an organic component and copper (II) ions (Cu2+) as inorganic component. The effect of the peroxidase‐mimicking activity of green tea‐Cu2+ nanobiocatalyst was investigated on the polymerization of phenol and derivatives (guaiacol and salicylic acid) through Fenton‐like reaction mechanism. Obtained successful outcomes showed that the synthesized nanobiocatalyst showed very high catalytic activity upon polymerization of phenol and guaiacol. The slight solubility of salicylic acid in water limited to achieve its polymerization under‐performed reaction conditions. The yields and molecular weights of the obtained polymers were found to be quite high. While free peroxidase enzymes like horseradish peroxidase (HRP) enzyme loses its catalytic activity at 60°C and above temperatures, green tea‐Cu2+ nanobiocatalyst exhibited very high catalytic activity upon polymerization reactions even at 60°C reaction temperature. This outcome provides significant advantages in some reactions requiring high temperatures. In order to understand the origin of the catalytic activity of the green tea‐Cu2+ nanoflowers, similar biocatalysts were also synthesized from caffeine and catechin alkaloids which are the active components of green tea. Caffeine‐Cu2+ and catechine‐Cu2+ nanobiocatalysts also exhibited quite high catalytic activity toward polymerization of phenol and derivatives. We suggest that green tea‐Cu2+ and similar types of nanobiocatalysts may expand their utilization in polymer chemistry as promising catalytic agents for radicalic polymerizations.

Funder

Mustafa Kemal Üniversitesi

Publisher

Wiley

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3