Predicting clinical progression trajectories of early Alzheimer's disease patients

Author:

Devanarayan Viswanath12ORCID,Ye Yuanqing1,Charil Arnaud1,Andreozzi Erica1,Sachdev Pallavi1,Llano Daniel A.34,Tian Lu5,Zhu Liang1,Hampel Harald1,Kramer Lynn1,Dhadda Shobha1,Irizarry Michael1,

Affiliation:

1. Clinical Evidence Generation Eisai Inc. Nutley New Jersey USA

2. Department of Mathematics Statistics and Computer Science University of Illinois Chicago Chicago Illinois USA

3. Carle Illinois College of Medicine Urbana Illinois USA

4. Department of Molecular and Integrative Physiology University of Illinois Urbana‐Champaign Urbana Illinois USA

5. Department of Biomedical Data Science Stanford University School of Medicine Palo Alto California USA

Abstract

ABSTRACTBackgroundModels for forecasting individual clinical progression trajectories in early Alzheimer's disease (AD) are needed for optimizing clinical studies and patient monitoring.METHODSPrediction models were constructed using a clinical trial training cohort (TC; n = 934) via a gradient boosting algorithm and then evaluated in two validation cohorts (VC 1, n = 235; VC 2, n = 421). Model inputs included baseline clinical features (cognitive function assessments, APOE ε4 status, and demographics) and brain magnetic resonance imaging (MRI) measures.RESULTSThe model using clinical features achieved R2 of 0.21 and 0.31 for predicting 2‐year cognitive decline in VC 1 and VC 2, respectively. Adding MRI features improved the R2 to 0.29 in VC 1, which employed the same preprocessing pipeline as the TC. Utilizing these model‐based predictions for clinical trial enrichment reduced the required sample size by 20% to 49%.DISCUSSIONOur validated prediction models enable baseline prediction of clinical progression trajectories in early AD, benefiting clinical trial enrichment and various applications.

Funder

Alzheimer's Disease Neuroimaging Initiative

National Institutes of Health

U.S. Department of Defense

National Institute on Aging

National Institute of Biomedical Imaging and Bioengineering

Canadian Institutes of Health Research

Publisher

Wiley

Subject

Psychiatry and Mental health,Cellular and Molecular Neuroscience,Geriatrics and Gerontology,Neurology (clinical),Developmental Neuroscience,Health Policy,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3