Ammonium oxidizing bacterial populations in South African activated sludge wastewater treatment plants

Author:

Welz Pamela J.1,Thobejane Mfundisi P.12,van Blerk Gerhardus N.2

Affiliation:

1. Applied Microbial and Health Biotechnology Institute (AMBHI), Bellville campus Symphony Way Cape Peninsula University of Technology Cape Town South Africa

2. Ekurhuleni Water Care Company (ERWAT) Kempton Park South Africa

Abstract

AbstractThis is the first study that describes ammonium oxidizing bacterial populations and correlations of these populations with a range of criteria in activated sludge wastewater treatment plants in South Africa. In this study, not only the influent but also the activated sludge chemistry was comprehensively characterized. Multivariate statistical analyses were used to determine the relative significances of the geographical location (factor: site), wastewater treatment plant process (factor: configuration), seasonality (factor: season), and environmental parameters on the ammonium oxidizing bacterial genera in six municipal activated sludge wastewater treatments plants from two sites (the cities of Cape Town and Ekurhuleni). The geographical location (site) was significant for selection of the ammonium oxidizing genera (Global ANOSIM R value = 0.538, p = 0.001). It was established that the inter‐site differences were not climatic in origin, nor related to the composition of the influent, but were rather driven by the activated sludge chemistry. It was found using BEST analysis that the activated sludge ammonia, activated sludge total phosphate, and activated sludge total chemical oxygen demand were the most significant (p < 0.001) drivers for ammonium oxidizing bacterial selection (ANOSIM Global R value 0.419) and were significantly higher in the activated sludge from the City of Cape Town wastewater treatment plants. Nitrosospira was the most abundant ammonium oxidizing bacterial genus, with notably higher relative and estimated actual abundances in the City of Cape Town wastewater treatment plants than the City of Ekurhuleni wastewater treatment plants. The strong selection of Nitrosospira in the City of Cape Town wastewater treatment plants with higher nutrient concentrations strongly suggests that high concentrations of activated sludge ammonia, activated sludge total phosphate, and activated sludge total chemical oxygen demand are key selective drivers for this genus.Practitioner Points First comprehensive study describing ammonium oxidizing bacterial populations in Southern African domestic activated sludge wastewater treatment plants. The geographical location (site) was significant for selection of different ammonium oxidizing genera (Global ANOSIM R value = 0.538, p = 0.001). Inter‐site differences driven by the activated sludge chemistry, not climate or influent wastewater composition. Selection of Nitrosospira driven by high concentrations of activated sludge ammonia, total phosphate and total chemical oxygen demand.

Funder

Water Research Commission

Publisher

Wiley

Subject

Water Science and Technology,Ecological Modeling,Waste Management and Disposal,Pollution,Environmental Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3