Influence of iron, phosphate, and silicate on arsenic removal from groundwater using a low‐cost ceramic filter

Author:

Shafiquzzaman Md.1ORCID,Haider Husnain1,Azam Mohammad Shafiul2,Ahsan Amimul34,Alresheedi Mohammad1,AlSaleem Saleem S.1,Ghumman Abdul Razzaq1,Ahmed Abdelkader T.5ORCID

Affiliation:

1. Department of Civil Engineering, College of Engineering Qassim University Buraydah Saudi Arabia

2. Department of Environmental Water Resources and Coastal Engineering Military Institute of Science and Technology (MIST) Dhaka Bangladesh

3. Department of Civil and Environmental Engineering Islamic University of Technology (IUT) Gazipur Bangladesh

4. Department of Civil and Construction Engineering Swinburne University of Technology Melbourne Australia

5. Civil Engineering Department, Faculty of Engineering Islamic University of Madinah Al‐Madinah al‐Munawwarah Saudi Arabia

Abstract

AbstractThe ceramic filter amended with iron (Fe) has proven to be a potential low‐cost method for arsenic (As) removal from groundwater. The presence of Fe, phosphate (P), and silicate (Si) significantly affects the As removal efficiency of the ceramic filter, which has not been passably investigated. The present research aimed to examine the effect of Fe, P, and (or) Si presence as single or in combination on As (III) removal from synthetics groundwater by a low‐cost iron amended ceramic filter (IACF). Laboratory‐scale filtration experiments at different compositions of Fe, P, Si, and As (III) were conducted by the IACF fabricated with a ceramic candle and iron netting box. Fe (II) in synthetic groundwater positively impacted As (III) removal. At a concentration of 2 mg/L of Fe (II), the As levels in the effluent decreased to less than the maximum contamination level (MCL) of 50 μg/L. Groundwater P concentration needed less than 3 mg/L or Si concentrations required less than 35 mg/L to effectively reduce As (III) to below the MCL at 5 mg/L of groundwater Fe (II). The cumulative effect of P and Si on As removal was found to be more significant than distinct contributions. The presence of 2 mg/L P and 35 mg/L or higher Si in the groundwater cumulatively reduced the As removal performance from 92% to 63%, and the MCL was not met. The negative impact of P and Si on As (III) removal followed the order of (P + Si) > P > Si. P competed with As for adsorption sites during the process, while Si inhibited the Fe release and floc formation, significantly reducing As removal performance. The study findings can potentially contribute to optimizing IACF as a low‐cost method for As removal from groundwater.

Publisher

Wiley

Subject

Water Science and Technology,Ecological Modeling,Waste Management and Disposal,Pollution,Environmental Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3