Stability of unsaturated soil slope considering stratigraphic uncertainty and rotated anisotropy of soil properties

Author:

Cao Wei12ORCID,Zhou Annan3ORCID,Shen Shui‐Long4ORCID

Affiliation:

1. School of Transportation Science and Engineering Beihang University Beijing China

2. School of Architectural Engineering North China Institute of Science and Technology Langfang China

3. School of Engineering Royal Melbourne Institute of Technology Melbourne Australia

4. Department of Civil Engineering and Smart Cities, College of Engineering Shantou University Guangdong China

Abstract

AbstractThe stratigraphic uncertainty and rotated anisotropy of soil properties exist widely in nature. Recent studies have shown that the slope stability was significantly influenced by these two uncertainties. However, there is no proper method for simulating these two uncertainties at the same time, and the influence of the two uncertainties has not been considered in previous unsaturated soil slope stability analysis. This paper aims to propose a coupled method for characterizing the stratigraphic uncertainty and rotated anisotropy of soil properties, and investigate the unsaturated soil slope stability considering the two uncertainties. Through a slope case, the proposed method for characterizing the two uncertainties is examined. The effect of rotational angle on the slope stability and groundwater table is studied. In addition, four different uncertainty considerations are chosen to compare their influence on the slope stability and groundwater table. The results show that the proposed method can well characterize the two uncertainties at the same time. The rotational anisotropy of soil properties has a substantial impact on the slope stability and groundwater table. The rotational angles corresponding to the maximum and minimum reliability index of slope depend on the uncertainty considerations in the slope stability analysis. The slope reliability index only considering stratigraphic uncertainty is the highest, and the slope reliability index considering stratigraphic uncertainty and rotated anisotropy of soil properties is the lowest.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Mechanics of Materials,Geotechnical Engineering and Engineering Geology,General Materials Science,Computational Mechanics

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3