Early warning indicators capture catastrophic transitions driven by explicit rates of environmental change

Author:

Arumugam Ramesh1ORCID,Guichard Frederic1ORCID,Lutscher Frithjof2ORCID

Affiliation:

1. Department of Biology McGill University Montreal Quebec Canada

2. Department of Mathematics and Statistics, and Department of Biology University of Ottawa Ottawa Ontario Canada

Abstract

AbstractIn response to external changes, ecosystems can undergo catastrophic transitions. Early warning indicators aim to predict such transitions based on the phenomenon of critical slowing down at bifurcation points found under a constant environment. When an explicit rate of environmental change is considered, catastrophic transitions can become distinct phenomena from bifurcations, and result from a delayed response to noncatastrophic bifurcations. We use a trophic metacommunity model where transitions in time series and bifurcations of the system are distinct phenomena. We calculate early warning indicators from the time series of the continually changing system and show that they predict not the bifurcation of the underlying system but the actual catastrophic transition driven by the explicit rate of change. Predictions based on the bifurcation structure could miss catastrophic transitions that can still be captured by early warning signals calculated from time series. Our results expand the repertoire of mechanistic models used to anticipate catastrophic transitions to nonequilibrium ecological systems exposed to a constant rate of environmental change.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3