Recent trends in the additive manufacturing of polyurethanes

Author:

Bean Ren H1ORCID,Long Timothy E1ORCID

Affiliation:

1. School of Molecular Sciences and Biodesign Center for Sustainable Macromolecular Materials and Manufacturing (SM3) Arizona State University Tempe AZ USA

Abstract

AbstractPolyurethanes are remarkably versatile materials that offer exceptional control over structure–property relationships, making them the subject of extensive research and exploration across diverse applications. These materials have garnered significant attention due to their inherent chemical, mechanical, thermomechanical, biological and physical properties, further fueling interest in their potential uses. However, conventional processing methods, involving molds, high temperatures or solvents, impose limitations on geometric complexity, hindering their potential applications. Additive manufacturing, or 3D printing, has emerged as a transformative solution, enabling the fabrication of intricate geometries, unparalleled design flexibility, dematerialization and enhanced material properties. This mini‐review explores recent advancements in additive manufacturing techniques applied to polyurethanes, focusing on three prominent 3D printing modalities: vat photopolymerization, direct ink write and fused filament fabrication. Examining the successful integration of polyurethanes with these cutting‐edge 3D printing methods illuminates the remarkable progress achieved in tailoring part design, expanding the range of applications and unlocking novel material−object functionalities. This mini‐review aims to provide valuable insight into the latest trends and development in 3D printing polyurethanes, paving the way for their future utilization in diverse industries. © 2023 Society of Chemical Industry.

Publisher

Wiley

Subject

Polymers and Plastics,Materials Chemistry,Organic Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3