Detection of distributed denial of service attack using enhanced adaptive deep dilated ensemble with hybrid meta‐heuristic approach

Author:

Aliar Ahamed Ali Samsu1,Gowri V.2,Abins A. Arockia1

Affiliation:

1. Department of Computer Science and Engineering Easwari Engineering College Chennai India

2. Department of Computer Science and Engineering SRM Institute of Science and Technology Ramapuram India

Abstract

AbstractThe biggest firms throughout the world now are the ones that offer services in the cloud. One of the top problems for cloud users (CUs) and cloud service providers (CSPs) is the availability of cloud‐based services whenever needed. A distributed denial of service (DDoS) assault has been a significant threat to the security of the system in recent years. DDoS defense and detection of these attacks have become hot topics of research for academia and business. However, most approaches cannot accomplish efficient detection outcomes with few false alarms. As a result, minimizing the consequences of DDoS attacks allows CSPs to offer CUs high‐quality services. In the cloud sector, a collective deep structured algorithm is suggested to identify DDoS attacks successfully. The recommended method contains several stages: data acquisition, pre‐processing, optimal feature detection, and selection. The first step is the acquisition of data using the help of publicly available sources. Further, the input data undergoes preprocessing. Consequently, the optimal weighted feature selection takes place on the preprocessed data, where the optimization is done with the aid of the Hybrid Border Collie and Dragonfly Algorithm (HBCDA). Finally, DDoS attack detection is achieved via a novel method known as adaptive deep dilated ensemble (ADDE), which includes, one‐dimensional convolutional neural network (1DCNN), deep temporal convolutional neural network (DTCNN), recurrent neural network (RNN), and bidirectional long short‐term memory (Bi‐LSTM). For the attainment of optimal results, the parameter tuning is accomplished by using the HBCDA approach. The detection outcome is computed by using the fuzzy ranking mechanism. The validation is done for the suggested method model, and its corresponding findings are validated with conventional techniques. Hence, the suggested approach outperforms the detection performance and ensures more efficiency than traditional approaches.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Smart network security using advanced ensemble-DDoS attack detection and hybrid JA-SLOA-linked optimal routing-based mitigation;Australian Journal of Electrical and Electronics Engineering;2024-04-21

2. A Hybrid Slime Mould Meta Heuristic Algorithm and Machine Learning Technique for Intrusion Detection System;2024 Third International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS);2024-03-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3