Affiliation:
1. University of Maryland Institute for Bioscience and Biotechnology Research Rockville Maryland USA
2. Department of Cell Biology and Molecular Genetics University of Maryland College Park Maryland USA
Abstract
AbstractHigh resolution antibody–antigen structures provide critical insights into immune recognition and can inform therapeutic design. The challenges of experimental structural determination and the diversity of the immune repertoire underscore the necessity of accurate computational tools for modeling antibody–antigen complexes. Initial benchmarking showed that despite overall success in modeling protein–protein complexes, AlphaFold and AlphaFold‐Multimer have limited success in modeling antibody–antigen interactions. In this study, we performed a thorough analysis of AlphaFold's antibody–antigen modeling performance on 427 nonredundant antibody–antigen complex structures, identifying useful confidence metrics for predicting model quality, and features of complexes associated with improved modeling success. Notably, we found that the latest version of AlphaFold improves near‐native modeling success to over 30%, versus approximately 20% for a previous version, while increased AlphaFold sampling gives approximately 50% success. With this improved success, AlphaFold can generate accurate antibody–antigen models in many cases, while additional training or other optimization may further improve performance.
Funder
National Institutes of Health
Subject
Molecular Biology,Biochemistry
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献