Enhancing Flow Batteries: Topology Optimization of Electrode Porosity and Shape Optimization of Cell Design

Author:

Wolf Amadeus1ORCID,Noack Jens2ORCID,Krause Mathias J.3ORCID,Nirschl Hermann1

Affiliation:

1. Institute for Mechanical Process Engineering and Mechanics Karlsruhe Institute of Technology Strasse am Forum 8 76131 Karlsruhe Germany

2. Fraunhofer‐Institute for Chemical Technology (ICT) Joseph‐von‐Fraunhofer‐Str. 7 76327 Pfinztal Germany

3. Lattice Boltzmann Research Group Karlsruhe Institute of Technology Strasse am Forum 8 76131 Karlsruhe Germany

Abstract

This research focuses on the improvement of porosity distribution within the electrode of an all‐vanadium redox flow battery (VRFB) and on optimizing novel cell designs. A half‐cell model, coupled with topology and shape optimization framework, is introduced. The multiobjective functional in both cases aims to minimize pressure drop while maximizing reaction rate within the cell. Topology optimization results reveal dependencies on initial value, porosity constraint, and flow rate. The distribution with lower porosity is preferred downstream of the inlet manifold. This design enhances active surface area, thus facilitating more effective conversion of incoming educts and improving mass transport of products. Compared to homogeneous electrodes, two‐part design demonstrates superior performance at specific porosity values. For combined porosities of 0.7 and 0.95, optimized distribution results in 81 % reduction in pressure drop, while conversion rate decreases by 7%. As regards various cell designs, optimization suggests a need to reconsider the vertical format of a rectangular cell. Horizontal cells are favored for nearly all porosities and flow rates. Trapezoidal and radial designs characterized by reduced downstream cross sections lead to higher pressure drops and are not preferred. This work provides further valuable insight into optimizing VRFB electrodes and challenges conventional cell design assumptions.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3