Engineering Redox Flow Battery Electrodes with Spatially Varying Porosity Using Non‐Solvent‐Induced Phase Separation

Author:

Wan Charles Tai-Chieh12ORCID,Jacquemond Rémy Richard34,Chiang Yet-Ming15ORCID,Forner-Cuenca Antoni3ORCID,Brushett Fikile R.12ORCID

Affiliation:

1. Joint Center for Energy Storage Research Massachusetts Institute of Technology Cambridge MA 02139 USA

2. Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA

3. Membrane Materials and Processes Department of Chemical Engineering and Chemistry Eindhoven University of Technology 5600 MB Eindhoven The Netherlands

4. DIFFER - Dutch Institute for Fundamental Energy Research 5612 AJ Eindhoven The Netherlands

5. Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA

Abstract

Redox flow batteries (RFBs) are a promising electrochemical platform for efficiently and reliably delivering electricity to the grid. Within the RFB, porous carbonaceous electrodes facilitate electrochemical reactions and distribute the flowing electrolyte. Tailoring electrode microstructure and surface area can improve RFB performance, lowering costs. Electrodes with spatially varying porosity may increase electrode utilization and provide surface area in reaction‐limited zones; however, the efficacy of such designs remains an open area of research. Herein, a non‐solvent‐induced phase‐separation (NIPS) technique that enables the reproducible synthesis of macrovoid‐free electrodes with well‐defined across‐thickness porosity gradients is described. The monotonically varying porosity profile is quantified and the physical properties and surface chemistries of porosity‐gradient electrodes are compared with macrovoid‐containing electrode, also synthesized by NIPS. Then, the electrochemical and fluid dynamic performance of the porosity‐gradient electrodes is evaluated, exploring the effect of changing the direction of the porosity gradient and benchmarking against the macrovoid‐containing electrode. Lastly, the performance is examined in a vanadium RFB, finding that the porosity‐gradient electrode outperforms the macrovoid electrode, is independent of gradient direction, and performs favorably compared to advanced electrodes in the contemporary literature. It is anticipated that the approach motivates further exploration of microstructurally tailored electrodes in electrochemical systems.

Funder

National Science Foundation

Division of Graduate Education

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

U.S. Department of Energy

Publisher

Wiley

Subject

General Energy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3