A Rational Design of Silicon‐Based Anode for All‐Solid‐State Lithium‐Ion Batteries: A Review

Author:

Kim Minho1ORCID,Ahn Hwichan1,Choi Junil1,Kim Won Bae12ORCID

Affiliation:

1. Department of Chemical Engineering Pohang University of Science and Technology (POSTECH) 77 Cheongam-ro, Nam-gu Pohang Gyeongbuk 37673 Republic of Korea

2. Graduate Institute of Ferrous and Energy Materials Technology Pohang University of Science and Technology (POSTECH) 77 Cheongam-ro, Nam-gu Pohang Gyeongbuk 37673 Republic of Korea

Abstract

Silicon is a promising alternative to the conventional graphite anode for lithium‐ion batteries (LIBs). However, pulverization of Si particles caused by volume expansion and formation of unstable solid electrolyte interphase can lead to several failure behaviors of LIBs. In contrast to LIBs employing liquid electrolytes, all‐solid‐state batteries (ASSBs) could exhibit totally different interfacial environments over Si anode materials, in terms of wetting properties of the Si surface by electrolyte. This characteristic interface of Si anode with solid‐state electrolyte (SSE) can change the electrochemical stability and long‐term life cycle performance of Si. In respect of commercialization, the incorporation of Si anode into ASSB could be the strongest approach to overcome the intrinsic limitations of anode materials. However, large contact losses between Si and SSE have to be handled in order to provide good electrochemical performance and stability. In this review, failure behaviors of Si anode within the SSE with proper characterization method is addressed and several design strategies for incorporation of Si anode into ASSB based on the following classifications are introduced: composite type and diffusion‐dependent type Si anodes. From this review, the possibility of Si anode for practical application to next‐generation ASSB by regulating its chemical and mechanical properties is suggested.

Funder

Ministry of Science and ICT, South Korea

Ministry of Trade, Industry and Energy

Publisher

Wiley

Subject

General Energy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3