Preparing Li6V3(PO4)5 Cathode with Boron‐Doped Carbon Layer as a Cathode Material for Lithium‐Ion Batteries

Author:

Chen Yongguang1,Tian Hualing1,Cai Yanjun1,Wang Yingbo1,Yao Xiang1ORCID,Su Zhi12

Affiliation:

1. College of Chemistry and Chemical Engineering Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials Xinjiang Normal University Urumqi Xinjiang 830054 China

2. Xinjiang Key Laboratory of New Energy and Energy Storage Technology Xinjiang Institute of Technology Akesu 843100 P. R. China

Abstract

Polyanionic cathode materials are increasingly used in research because of their good cycling performance, high theoretical capacity, and high operating voltage. However, it exhibits poor performance due to its structure, which prevents it from reaching its full theoretical capacity. In this study, carbon‐coated Li6V3(PO4)5@C cathode materials are constructed under Li3V2(PO4)3 research conditions using the sol–gel process and anhydrous citric acid as the carbon source. Several boron doping concentrations are investigated to create Li6V3(PO4)5@BC cathode materials. The electrochemical measurements demonstrate that during the first cycle, at a current density of 0.5 C and a B doping quantity of 2 wt%, the specific discharge capacity of Li6V3(PO4)5@BC reaches 167.43 mAh g−1. The steady discharge specific capacity following 80 cycles of constant‐current charging and discharging is 136.84 mAh g−1. Li6V3(PO4)5@BC‐2 has a specific discharge capacity of 131.1 mAh g−1 at 2 C. The material's electrochemical performance greatly improves following the right quantity of B doping, which is primarily attributed to the increase in carbon layer defects brought on by B's entrance. This can increase the rate of lithium‐ion migration and hold more lithium ions.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3