Exploring Multi‐Level ETL and HTL Configurations for High‐Efficiency Lead‐Free Cs2AgBiBr6 Double Perovskite Solar Cells: A Design and Simulation Study

Author:

Mishra Vipul Vaibhav1,Sharma Anuj Kumar1,Siddharth Gaurav2,Garg Vivek3,Sengar Brajendra Singh4ORCID

Affiliation:

1. Department of Nanotechnology Centre for Advanced Studies Lucknow 226031 India

2. Department of Electronics and Communication Engineering National Institute of Technology Calicut Khozikode 673601 India

3. Department of Electronics Engineering S. V. National Institute of Technology Surat 395007 India

4. Department of Electronics and Communication Engineering National Institute of Technology Srinagar 190006 India

Abstract

Cs2AgBiBr6 is a promising lead‐free double perovskite solar cells (PSCs) material. Its full potential has yet to be realized due to issues with its large band gap and the optimization of the alignment of the electron transport layer (ETL) and hole transport layer (HTL). The photovoltaic performance of Cs2AgBiBr6‐based devices has been optimized using ZnO, IGZO, TiO2, WS2, PCBM, and C60 ETLs and Cu2O, CuScN, CuSbS2, NiO, P3HT, PEDOT: PSS, Spiro MeOTAD, CuI, CuO, V2O5, CBTS, and CFTS HTLs. It has been observed by simulation study that Cs2AgBiBr6‐based devices exhibit remarkably high photoconversion efficiency when combined with certain ETLs. To better understand the performance, we examine how the best device structures are affected by the absorber and ETL thickness, ETL carrier density, series and shunt resistance, generation, and recombination rate. The findings suggest that TiO2 and ZnO ETLs, in conjunction with CBTS HTL, exhibit good potential for producing high‐efficiency (η > 13%) Cs2AgBiBr6‐based heterojunction solar cells with an ITO/ETL/Cs2AgBiBr6/CBTS/Au device structure. Optimization of the valence band offset (VBO) at the CBTS/Cs2AgBiBr6 interface reveals that reduced VBO value has a beneficial impact on the performance of the solar cell. This modeling work gives a prospective route for manufacturing lead‐free Cs2AgBiBr6 PSCs.

Publisher

Wiley

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3