A Novel Phase Change Absorbent for CO2 Capture with Low Viscosity and Effective Absorption–Desorption Properties

Author:

Han Jianchao1,Qiu Zihan1,Chen Yuyan1,Gui Xia1ORCID,Chen Xiao2

Affiliation:

1. College of Chemical Engineering Nanjing Tech University 30 Puzhunan Road Nanjing 211816 P. R. China

2. JiangSu Haici Biological Pharmaceutical Co., Ltd. Yangtze River Pharmaceutical Group Jiangsu 225321 China

Abstract

Excessive carbon dioxide (CO2) emissions can lead to environmental problems, and the use of phase change absorbents for CO2 capture has received much attention due to their excellent absorption and desorption properties. Herein, a novel liquid–liquid phase change absorbent consisting of N‐aminoethylpiperazine (AEP), diethylene glycol dimethyl ether (DEGDME), and H2O is utilized. Under the optimal absorption conditions, the absorption capacity is 1.23 mol CO2·mol−1 amine. The rich‐phase viscosity of the AEP/DEGDME/H2O solution is only 6.2 mPa s−1, and the rich phase‐to‐volume ratio is 52.7%, which is suitable for industrial applications. After five cycles of absorption–desorption experiments, the cyclic capacity reaches 0.62 mol CO2·mol−1 amine. However, it should be noted that this leads to an increase in the viscosity of the solution with time. The 13C Nuclear Magnetic Resonance characterization is used to analyze the material distribution and phase separation mechanism, and it is found that during the absorption process, the carbamate and carbonate products generated by the reaction of the amino group in the AEP with CO2 are mainly located in the rich phase, while the DEGDME and H2O mainly remain in the lean phase. In the desorption process, most of the absorbed products are decomposed, and the regeneration efficiency is 66.8%. Through the regeneration energy consumption experiment, when the regeneration efficiency is 56%–67%, the total regeneration energy consumption is 2.71–2.89 GJ t−1 CO2, which is 0.91–1.09 GJ t−1 CO2 lower than that of the regeneration efficiency of 30 wt% MEA solution at 63%, which indicates that this absorbent has certain energy‐saving advantages.

Funder

Key Research and Development Program of Zhejiang Province

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3