Simulations and Suitability Study of Inorganic Cu‐Based Hole‐Transport Layers in Planar CH3NH3SnI3‐Based Perovskite Solar Cell and Module

Author:

Qasim Irfan1,Malik Muhammad Imran2ORCID

Affiliation:

1. Materials Research Laboratory Department of Physics (FEAS) Riphah International University Islamabad 44000 Pakistan

2. School of Electrical Engineering and Computer Science (SEECS) National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan

Abstract

Hybrid perovskite light‐harvesting materials offer a high absorption coefficient, solution‐based synthesis techniques, and tunable bandgap, making them ideal for high‐performance renewable energy devices. The primary focus of current investigations is the design and comparative numerical investigation of solar cells. Key aspects with a substantial influence on device output, such as quantum efficiency, surface depth, bandgap tuning, interfacial defect densities, thicknesses of structural layers, temperature, carrier generation, and recombination rates, are explored and optimized. The investigation of Cu‐based hole‐transport layers (HTLs) has revealed that Cu2O (power conversion efficiency [PCE] = 22.60%), CuCrO2 (PCE = 22.25%), and CuI (PCE = 21.54%) have shown remarkable photovoltaic parameters with high carrier generation and reduced recombination rates. CuCrO2 has shown significant electrical parameters, which are further incorporated into the module simulation software PVsyst. Calculations are performed with a combination of 72 cells in series for a solar module of standard weight 27 kg and dimensions 2.20 m × 1.10 m in Islamabad, Pakistan. The module has shown an impressive power output of 523.40 W and an annual performance ratio of 88.6%. Simulated results endorse a viable and technically feasible route to incorporate Cu‐based HTLs into the design of perovskite absorber‐based solar cells and modules to increase their efficiency and maximize power production.

Publisher

Wiley

Subject

General Energy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3