Remaining Useful Life Prediction of Lithium‐Ion Batteries Based on a Combination of Ensemble Empirical Mode Decomposition and Deep Belief Network–Long Short‐Term Memory

Author:

Wu Tiezhou1,Cheng Kangjie1ORCID,Kang Jian1,Liu Ruanyang1

Affiliation:

1. Hubei Key Laboratory for High‐efficient Utilization of Solar Energy and Operation Control of Energy Storge System Hubei University of Technology Wuhan Hubei Province 430068 China

Abstract

The prediction of remaining useful life (RUL) for lithium‐ion batteries is a critical component of electric vehicle battery management systems. However, during the aging process, batteries exhibit an overall declining trend in capacity curves, coupled with capacity regeneration and localized fluctuations. Directly modeling this degradation trend based on the original capacity curve proves challenging, leading to reduced accuracy in RUL prediction. This article introduces a hybrid method to enhance the precision of battery RUL prediction. Utilizing the ensemble empirical mode decomposition technique, the battery's capacity degradation sequence is decomposed into intrinsic mode functions (IMFs) with varying degrees of fluctuations, along with a residue that characterizes the battery's overall declining trend. Subsequently, deep belief networks and long short‐term memory networks are established to predict the residue and IMFs separately. The combined results from these models yield the final battery RUL prediction. Finally, the effectiveness of this approach is validated on the NASA battery dataset, with diverse training periods and prediction time steps. Experimental results demonstrate that the root mean square error of predictions for all four batteries remains below 2%.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3