Hydrogen Production, Purification, Storage, Transportation, and Their Applications: A Review

Author:

Panda Prasanta Kumar1ORCID,Sahoo Benudhar1,Ramakrishna Seeram2

Affiliation:

1. Materials Science Division CSIR-National Aerospace Laboratories Kodihalli Bengaluru 560017 India

2. Department of Mechanical Engineering National University of Singapore (NUS) Singapore 119077 Singapore

Abstract

The world is looking for clean and green energy as substitution for fossil fuels to minimize the greenhouse effect and climate changes threatening our existence. Solar energy, wind energy, and hydrogen gas‐based energy are few examples of promising sources of energy alternatives to fossil fuels. Hydrogen gas‐based energy is in focus today due to its availability in plenty of combined forms such as water, hydrocarbons, natural gases, etc. However, its storage and transportation are major challenges due to the low volumetric density and explosive nature of hydrogen. The scientific community is in search of suitable, economically viable, and energy‐efficient storage systems and transportation of hydrogen gas. Based on numerous studies, surface adsorption of hydrogen by high surface area nanoporous solids such as carbon and metal–organic framework (MOF)‐based nanofiber materials are most suitable for storage applications. Electrospinning process provides a gateway for the preparation of lightweight, highly porous nanofibers for efficient hydrogen adsorption. Herein, the production and use of electrospun polymer nanofibers and MOFs for the storage and transportation of hydrogen are presented.

Publisher

Wiley

Subject

General Energy

Reference129 articles.

1. Global hydrogen development - A technological and geopolitical overview

2. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges

3. The Paris Agreement 2015 https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed: October 2022).

4. Hydrogen in energy transition: A review

5. The Future of Hydrogen Seizing Today's Opportunities 2019 https://www.iea.org/reports/the-future-of-hydrogen.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3