Progress in Sodium Silicates for All‐Solid‐State Sodium Batteries—a Review

Author:

Sivakumaran Abinaya1,Samson Alfred Junio1,Thangadurai Venkataraman1ORCID

Affiliation:

1. Department of Chemistry University of Calgary Calgary Alberta T2N 1N4 Canada

Abstract

All solid‐state sodium batteries (ASSSBs) are considered a promising alternative to lithium‐ion batteries due to increased safety in employing solid‐state components and the widespread availability and low cost of sodium. As one of the indispensable components in the battery system, organic liquid electrolytes are the currently used electrolytes due to their high‐ionic conductivity (10−2 S cm−1) and good wettability; however, their low‐thermal stability, flammability, and leakage tendency pose safety concerns. The growing sodium‐ion battery technology with solid electrolytes is a viable solution due to their improved safety. However, solid electrolytes suffer from insufficient ionic conductivity at room temperature (10−4–10−3 S cm−1), poor interface stability, high charge‐transfer resistance, and low wettability, yielding inferior battery performance. Sodium rare‐earth silicates are a new class of materials with a 3D structure framework similar to sodium‐superionic conductors (NASICONs). These silicates can be used as a solid electrolyte for solid‐state sodium batteries due to their high‐ionic conduction (10−3 S cm−1) at 25 °C. Herein, the sodium rare‐earth silicate synthesis, crystal structure, ion‐conduction mechanism, doping, and electrochemical properties are discussed. This emerging type of inorganic solid electrolyte can pave the way to building next‐generation ASSSBs.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

General Energy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3