Affiliation:
1. Laboratory of Physical-Chemistry of Materials and Electrolytes for Energy (PCM2E) University of Tours 37200 Tours France
2. Department of Materials Science, Energy, and Nano-Engineering Mohamed VI Polytechnic University 43150 Ben Guerir Morocco
3. Laboratory of Chemical Engineering and Resources Valorization (LGCVR) Faculty of Sciences and Techniques University Abdelmalek Essaadi 90010 Tangier Morocco
Abstract
Herein, the formulation of safe electrolytes for Li‐ion batteries based on phosphazene as a flame‐retardant (FR) is achieved. Three molecules are studied: hexafluorocyclotriphosphazene (FR1), (ethoxy)pentafluorocyclotriphosphazene (FR2), and pentafluoro(phenoxy)cyclotriphosphazene (FR3). By using a conventional electrolyte (LiPF6 salt in an ethylene carbonate/diethyl carbonate solvents mixture), FR's minimum percentages are defined to quantify their efficiency as FRs. Fluoroethylene carbonate is also added to the electrolyte (2 wt%). The surface tensions, vapor pressures, and transport properties of formulated electrolytes are measured to highlight the impact of the FR additives. Then, these electrolytes are tested in half and full electrochemical devices: Li|LiMn1.5Ni0.5O4 (LMNO) and graphite|LMNO between C/10 and C/2 at 20 °C. Flammability tests show that 3% of FR1, 5% of FR2, or 15% of FR3 are needed to make the electrolytes nonflammable. The transport properties of electrolytes based on FR1 and FR2 remain unchanged compared to the conventional electrolyte. Finally, the graphite|LMNO devices lose only 5% of the initial capacity after 100 cycles with the electrolytes based on FR1 and FR2, hence, confirming the latter's potential as an efficient FR for high‐voltage Li‐ion batteries.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献