Deep and Comprehensive Study on the Impact of Different Phosphazene‐Based Flame‐Retardant Additives on Electrolyte Properties, Performance, and Durability of High‐Voltage LMNO‐Based Lithium‐Ion Batteries

Author:

Sayah Simon1,Baazizi Mariam12ORCID,Karbak Mehdi13ORCID,Jacquemin Johan12ORCID,Ghamouss Fouad12ORCID

Affiliation:

1. Laboratory of Physical-Chemistry of Materials and Electrolytes for Energy (PCM2E) University of Tours 37200 Tours France

2. Department of Materials Science, Energy, and Nano-Engineering Mohamed VI Polytechnic University 43150 Ben Guerir Morocco

3. Laboratory of Chemical Engineering and Resources Valorization (LGCVR) Faculty of Sciences and Techniques University Abdelmalek Essaadi 90010 Tangier Morocco

Abstract

Herein, the formulation of safe electrolytes for Li‐ion batteries based on phosphazene as a flame‐retardant (FR) is achieved. Three molecules are studied: hexafluorocyclotriphosphazene (FR1), (ethoxy)pentafluorocyclotriphosphazene (FR2), and pentafluoro(phenoxy)cyclotriphosphazene (FR3). By using a conventional electrolyte (LiPF6 salt in an ethylene carbonate/diethyl carbonate solvents mixture), FR's minimum percentages are defined to quantify their efficiency as FRs. Fluoroethylene carbonate is also added to the electrolyte (2 wt%). The surface tensions, vapor pressures, and transport properties of formulated electrolytes are measured to highlight the impact of the FR additives. Then, these electrolytes are tested in half and full electrochemical devices: Li|LiMn1.5Ni0.5O4 (LMNO) and graphite|LMNO between C/10 and C/2 at 20 °C. Flammability tests show that 3% of FR1, 5% of FR2, or 15% of FR3 are needed to make the electrolytes nonflammable. The transport properties of electrolytes based on FR1 and FR2 remain unchanged compared to the conventional electrolyte. Finally, the graphite|LMNO devices lose only 5% of the initial capacity after 100 cycles with the electrolytes based on FR1 and FR2, hence, confirming the latter's potential as an efficient FR for high‐voltage Li‐ion batteries.

Publisher

Wiley

Subject

General Energy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3