Study of Budding Snubber Quality Deterioration in Solid Oxide Fuel Cell‐Fed Inverter Used in Microgrid Energy Conversion

Author:

Ghosh Sankha Subhra1ORCID,Chattopadhyay Surajit2ORCID,Banerjee Sujata3,Das Arabinda1ORCID

Affiliation:

1. Department of Electrical Engineering Jadavpur University Kolkata West Bengal 700032 India

2. Department of Electrical Engineering GKCIET Malda West Bengal 732141 India

3. Department of Electrical Engineering IMPS College of Engineering and Technology Malda West Bengal 732103 India

Abstract

One of the biggest issues today is generating energy in a way that is clean, effective, and environmentally benign. The most crucial part of an integrated grid‐connected system is the grid inverter. Budding snubber quality deterioration in the microgrid (MG) inverters is a very critical issue. Snubbers are essential components in power electronic circuits. Snubbers increase efficiency and reliability while also enhancing circuit performance, enabling greater switching frequencies. Herein, a nascent snubber resistance fault (NSF) detection technique in a three‐phase inverter (3PhI) connected with the solid oxide fuel cell used in MG applications is presented. For fault detection, an investigation is conducted using the fast Fourier transform to the inverter output current signal. The investigation is done on the effect of different percentages of snubber resistance fault in the inverter on the zero‐frequency component, fundamental current component, total harmonic distortion factor, and the subharmonic current components of the inverter current. Depending on the best‐fit parameters, an attempt is made to successfully detect the 3PhI NSF. An algorithm is proposed for NSF detection. Furthermore, this investigation's distinctive contribution and comparative analysis are presented.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3