Tuning CH4 Productivity from Visible Light‐Driven Gas‐Phase CO2 Photocatalytic Reduction on Doped g‐C3N4/TiO2 Heterojunctions

Author:

Hammoud Leila1ORCID,Marchal Clément1,Colbeau-Justin Christophe2ORCID,Toufaily Joumana3ORCID,Hamieh Tayssir34ORCID,Caps Valérie1ORCID,Keller Valérie1ORCID

Affiliation:

1. ICPEES Institut de Chimie et des Procédés pour l’Energie, l’Environnement et la Santé CNRS/Université de Strasbourg UMR 7515 (CNRS) 25 rue Becquerel 67087 Strasbourg Cedex France

2. ICP Institut de Chimie Physique, CNRS UMR 8000 Université Paris-Saclay Bâtiment 349 91405 Orsay Cedex France

3. MCEMA, Laboratory of Materials, Catalysis, Environment and Analytical Methods Lebanese University Hadath Campus Rafic Hariri Bayrouth Lebanon

4. Faculty of Science and Engineering Universiteit Maastricht P.O. Box 616 6200 ED Maastricht The Netherlands

Abstract

Herein, visible light‐driven gas‐phase photocatalytic CO2 reduction into CH4 is tuned by designing optimized three‐component Au/doped C3N4/TiO2 composite photocatalysts. The key point strategy consists in the formation of high‐quality C3N4/TiO2 heterojunction by associating low containing doped graphitic carbon nitride to commercially available TiO2 UV‐100. Those heterojunctions result in both visible light sensitization and increased charge‐carrier separation. Further deposition of small Au nanoparticles (≈3 nm), quite exclusively onto TiO2 surfaces, mainly acts as electron trapping/cocatalytic functions without excluding surface plasmonic effects. The resulting doped g‐C3N4 material exhibits enhanced visible light harvesting properties, especially in the case of C‐doping. In addition, it is assumed that B– and C–C3N4 doping, leading to a more or less lower conduction band position, is the impacting factor toward total CH4 selectivity achievement. The (0.77 wt%)Au/(0.59 wt%)C–C3N4/TiO2 composite photocatalyst, exhibiting the best compromise between the various impacting factors, leads to a continuous productivity rate of CH4 of 8.5 μmol h−1 g−1 under visible light irradiation over at least 10 h. To the best of knowledge, this level of performance is unprecedented under continuous gas‐phase flowing CO2 in the presence of water as reducing agent, without addition of any sacrificial agent.

Publisher

Wiley

Subject

General Energy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3