Energy Harvesting and Storage with a High Voltage Organic Inorganic Photo‐Battery for Internet of Things Applications

Author:

Büttner Jan123ORCID,Delgado Rodrigo134ORCID,Wessling Robin13456ORCID,Wang Yu123,Esser Birgit13456ORCID,Würfel Uli134ORCID,Fischer Anna1234ORCID

Affiliation:

1. Cluster of Excellence livMatS @ FIT – Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Georges‐Köhler‐Allee 105 D‐79110 Freiburg Germany

2. Institute for Inorganic and Analytical Chemistry University of Freiburg Albertstr. 21 79104 Freiburg Germany

3. FIT Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Georges‐Köhler‐Allee 105 79110 Freiburg Germany

4. FMF ‐ Freiburg Materials Research Center University of Freiburg Stefan‐Meier Str. 21 79104 Freiburg Germany

5. Institute for Organic Chemistry University of Freiburg Albertstr. 21 79104 Freiburg Germany

6. Institute of Organic Chemistry II and Advanced Materials Ulm University Albert‐Einstein‐Allee 11 89081 Ulm Germany

Abstract

Integrated local energy harvesting and storage is a critical prerequisite for energy autonomy of distributed sensing arrays required for the implementation of the internet of things (IoT). In this context, the monolithic integration of solar cells with metallic lithium‐based batteries into stacked high voltage photo‐batteries allows to provide said energy autonomy, with the smallest possible footprint and the highest resource efficiency. However current photo‐battery designs require additional electronics to control and match power output like maximum power point (MPP) tracking and overcharge protection. Herein a novel and compact monolithic photo‐battery design is provided, advantageously combining an organic solar cell with a NMC 622 versus metallic lithium‐based battery, matched in terms of VOC and cut‐off voltage, thereby achieving photo‐charging without any control electronics and energy release on demand at a very compact footprint of only 2.5 cm × 2.5 cm × 0.2 cm. Additionally, by applying a power profile simulating a temperature and humidity sensor over the course of a 24 h light and dark cycle, real world applicability of the photo‐battery in this type of applications is demonstrated.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3