Flexible Nanocarbon Electrodes for Holistically Engineered Solar Cell and Battery Integrated Piezoresistive Sensor

Author:

Ramasubramanian Brindha123,Reddy Vundrala Sumedha1,Ye Zhen1,Peng Goh Wei3,Le Yang3,Ramakrishna Seeram1ORCID,Chellappan Vijila23ORCID

Affiliation:

1. Center for Nanotechnology and Sustainability Department of Mechanical Engineering National University of Singapore Singapore 117574 Singapore

2. Institute for Functional Intelligent Materials National University of Singapore Singapore 117544 Singapore

3. Institute of Materials Research and Engineering Agency for Science, Technology and Research (A* STAR) #08‐03, 2 Fusionopolis Way, Innovis Singapore 138634 Singapore

Abstract

Herein, a sustainable graphitic carbon derived from waste polystyrene plastics (PS‐G) has been developed and a proof of concept for the integration of organic solar cells, Al‐ion batteries, and piezoresistive sensors based on PS‐G electrodes has been provided. First, a flexible organic solar cell (OSC) with the PS‐G interfacial layer between the photoactive material and the Al metal has enhanced charge extraction mobility with a power conversion efficiency (PCE) of 3.5%. A new range of possibilities in metal:semiconductor:carbon:metal contact and interfacial tuning in OSCs are made possible by the fact that pure PS‐G without Al can successfully extract electrons with a PCE of 0.89%. Second, when used as the cathode in an Al–carbon battery, PS‐G demonstrates a specific capacity of 148 mAh g−1 at 50 mA g−1. At different current densities, PS‐G cathodes demonstrate high cycling stability (with 65% capacity retention over 100 cycles). Finally, the best of the fabricated OSCs and the Al–carbon batteries are then combined with a piezoresistive sensor that includes an active PS‐G electrode. The battery‐powered sensor has a resistance of 40–45 × 104 Ω while the solar‐powered sensor has a resistance of 32–35 × 104 Ω, when subjected to mechanical stimuli, with a tensile strength of 20 N.

Funder

Agency for Science, Technology and Research

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3