Structure Optimization of Hydrogen‐Fueled Multiple Direct‐Injection Trapped Vortex Combustor Using Response Surface Method

Author:

Wu Ruibing1,Zeng Zhuoxiong12ORCID,Liu Hong3,Guo Kaifang4

Affiliation:

1. College of Energy and Mechanical Engineering Shanghai University of Electric Power Shanghai 200090 China

2. Shanghai Non‐Carbon Energy Conversion and Utilization Institute Shanghai Jiao Tong University Shanghai 200240 China

3. School of Chemical Engineering and Technology Xi'an Jiaotong University Xi'an 710049 China

4. School of Aeronautics and Astronautics Dalian University of Technology Dalian 116024 China

Abstract

A hydrogen‐fueled multiple direct‐injection trapped vortex combustor is proposed to improve the unstable combustion and reduce NO emission. The effects of bluff‐body depth, bluff‐body height, and bluff‐body angle on the combustion flow characteristics are analyzed. NO emission is used as the main response value, the response surface method (RSM) is adopted to optimize the bluff‐body depth, bluff‐body height, and bluff‐body angle. The results show that the bluff‐body depth, bluff‐body height, and bluff‐body angle have significant effects on the NO emission, with the increase of the three parameters, NO emission first drops and then rises, but the effects on the pressure loss and outlet temperature distribution factor (OTDF) are very small. After optimization by RSM, the optimal bluff‐body parameters are the bluff‐body depth a = 56.5 mm, the bluff‐body height b = 128.9 mm, and the bluff‐body angle α = 77.6°. Under these circumstances, the maximum radial distances of the front concave vortex and the rear concave vortex reach 48 mm and 57 mm, respectively, which enhances the combustion stability. Furthermore, NO emission of 1.64 ppmv in the optimization structure is significantly optimized compared to NO emission of 4.32 ppmv in the original structure.

Publisher

Wiley

Subject

General Energy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3