Effect of Alkyl Side Chains in BDT and 2D‐BDT Small‐Molecules as Donor Materials for Vacuum‐Processed Organic Photovoltaic Devices

Author:

Antoine Cristian1,Vilches Diego1ORCID,Preuss Paulo1,Angel Felipe A.123ORCID

Affiliation:

1. Departamento de Química Inorgánica Escuela de Química, Facultad de Química y de Farmacia Pontificia Universidad Católica de Chile 7820436 Santiago Chile

2. Centro de Nanotecnología y Materiales Avanzados CIEN‐UC Pontificia Universidad Católica de Chile 7820436 Santiago Chile

3. Centro de Energía CE‐UC Pontificia Universidad Católica de Chile 7820436 Santiago Chile

Abstract

Nine molecules based on benzo[1,2‐b:4,5‐b′]dithiophene (BDT) and 2D‐BDT derivatives are studied as donor materials in organic photovoltaic (OPV) devices fabricated by thermal evaporation, aiming to understand how different alkyl lateral substituents affect the molecular packing, the charge transport, and, subsequently, the device performance. Synthesis of the molecules is followed by a comprehensive characterization using thermal and differential scanning calorimetry analyses, which confirm their thermal stability and suitability for vacuum‐processed OPV devices. Thermal analysis also demonstrates a strong correlation between the melting point reduction of the molecules and the disorder caused by the alkyl chains. As the synthesized molecules present similar optical properties, the differences in the device performance are caused by the different substituents. BDT derivatives with low melting point temperatures produce reduced current density, hole mobility, and overall device performance, which are attributed to poor molecular packing. Additionally, energy‐dispersive X‐ray spectroscopy analysis suggests phase separation with fullerene, further impacting the efficiency of the devices. The findings indicate that the photovoltaic performance of BDT‐based molecules can be modulated by avoiding aliphatic substituents, providing a strategy for the design of more efficient materials, with thermal evaporation as an ideal method to evaluate and decouple molecular packing from solubility.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3