Affiliation:
1. Department of Chemistry KLE Technological University Hubballi 580031 India
2. Centre of Excellence in Material Science School of Mechanical Engineering KLE Technological University Hubballi 580031 India
Abstract
One of the factors that affect the performance of the value‐regulated lead acid (VRLA) battery is gel electrolyte. To address this, a gel polymer electrolyte comprising halloysite nano‐clay in a poly(vinyl alcohol) matrix is formulated and the electrochemical performance is studied. Interaction between halloysite nano‐clay and poly(vinyl alcohol) is confirmed by Fourier transform infrared spectroscopy (FTIR). To optimize the concentration of gel electrolytes, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization (PDP) are utilized. Galvanostatic charge‐discharge (GCD) tests are performed on a prototype battery comprising of an optimized gel electrolyte. The battery shows the highest discharge capacity of 6.858 μAh at 7.5 μA cm−2 current density and achieves admirable discharge capacity retention of 87.5% after 500 cycles. Hydrogen‐bonded halloysite nano‐clay and poly(vinyl alcohol) can be employed as gel electrolytes in VRLA batteries.