System Power Quality Analysis under Wind–Hydro Complementary Generation Mode

Author:

Gao Yuanqiang12,Liu Siyang12,Sun Xianan2,Liu Jing2,Liu Zhengguang2,Chen Diyi23ORCID,Zhao Ziwen23

Affiliation:

1. State Key Laboratory of Operation and Control of Renewable Energy & Storage Systems China Electric Power Research Institute Beijing 100089 P. R. China

2. Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas Ministry of Education Northwest A&F University Yangling Shaanxi 712100 P. R. China

3. Institute of Water Resources and Hydropower Research Northwest A&F University Yangling Shaanxi 712100 China

Abstract

The highly random and characteristics of wind power generation challenge the power quality of the wind–hydro complementary generation system (WHCGS). Herein, the transient characteristics of power quality under the complementary generating mode are studied. First, a nonlinear hydropower system (HPS) model is innovatively established considering the dynamic characteristics of hydrounits under part load operation, and then a wind power system model including wind speed model, wind turbine and its controller, generator and converter is established. Finally, the applicability of WHCGS model in power quality evaluation is established and verified by IEEE‐9 node model. Combined with active power, frequency, and voltage power quality indicators, the effects of wind–hydro capacity ratio and voltage sag on the system are quantified. The results show that the increase in wind power penetration will deteriorate the power quality of WHCGS. Moreover, when the wind power capacity reaches 60 MW, it will damage the voltage and frequency stability of HPS. Besides, the larger the voltage sag amplitude, the worse the power quality of WHCGS. The longer the voltage sag lasts, the higher the risk of WHCGS instability. This article provides a technical reference for the safe and stable operation of WHCGS.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3