Exploring the Impact of Ni Doping on Bagasse Biochar and Its Efficient Hydrogen Production via Assisted Water Electrolysis

Author:

Huang Kanzai1,Chang Menglei12ORCID,Zhang Jichuan1,Luo Zhaoqi1,Zhang Yuyuan12,Zhao Kai12,Wang Wen3,Chen Dongchu12

Affiliation:

1. School of Materials Science and Hydrogen Energy Foshan University Foshan Guangdong 528000 China

2. Guangdong Key Laboratory for Hydrogen Energy Technologies Foshan Guangdong 528000 China

3. Guangzhou Institute of Energy Conversion Chinese Academy of Sciences Guangzhou 510640 China

Abstract

Heteroatom doping in carbon matrices has been widely used to prepare efficient carbonaceous electrocatalysts. Biochar‐assisted water electrolysis (BAWE) is a promising hydrogen production method that can efficiently utilize waste biomass. However, it is often limited by the slow anode biochar oxidation reaction (BOR). In addition, pure biochar typically lacks enough active catalytic sites; hence, its electrochemical reactivity is unsatisfactory. Herein, Ni is doped into bagasse biochar to improve its BOR. Its electrochemical properties and hydrogen production performance are measured using linear sweep voltammetry, electrochemical impedance spectroscopy, and chronopotentiometry. The reaction characteristics of the bagasse biochar are analyzed. The impact of its physiochemical properties on its oxidation process is discussed. Compared to the undoped biochar, the Ni‐doped biochar shows a larger specific surface area, a higher degree of graphitization, and stronger biochar oxidation reactivity (including a lower onset potential and larger electric current density), which significantly increase the electric current density and hydrogen production. This study provides a beneficial strategy for improving BAWE.

Publisher

Wiley

Subject

General Energy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3