Thermodynamic and Environmental Analysis of Novel Cascade Refrigeration Cycles with Ejector and Intercooler for Ultralow Temperatures Using Eco‐Friendly Refrigerants

Author:

Hacıpaşaoğlu Servet Giray1ORCID,Öztürk İlhan Tekin1

Affiliation:

1. Department of Mechanical Engineering Faculty of Engineering Kocaeli University 41001 Kocaeli Turkey

Abstract

The present study introduces a novel cascade ejector intercooler refrigeration cycle (CEIRC) and a novel cascade ejector booster refrigeration cycle (CEBRC), which are designed to improve ultralow temperature (ULT) refrigeration system performance based on various refrigerants in terms of energy, exergy, and environment. Through the analysis conducted with eco‐friendly refrigerants for CEIRC, the refrigerant pair exhibits the highest performance that is found to consist of RE170 for high‐temperature cycles and R170 for low‐temperature cycles. These refrigerants have very low global warming potential and are eco‐friendly. The coefficient of performance (COP) reveals improvements of 3.20–9.51%, 10.55–19.12%, and 31.96–65.97% over the CEBRC, cascade ejector refrigeration cycle (CERC), and cascade vapor compression refrigeration cycle (CVCRC), respectively, resulting in corresponding exergy efficiency improvements of 3.18–9.49%, 10.48–19.12%, and 31.87–65.98%. The total compressor power and exergy destruction are also compared, indicating that the CEIRC exhibits the best performance among the four. CEIRC achieves a COP increase of 11.6% compared with the cascade refrigeration cycle, which is considered the cycle with the highest performance operating at ultralow temperatures in the literature, which is CERC. The kg CO2 effect of the CEIRC is 11.35% lower than that of the CERC.

Publisher

Wiley

Subject

General Energy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3