Stress Analysis of Graphite Anode under Various Binder Conditions in a Multiparticle Model through Multiscale Simulation and Experimental Verification

Author:

Park Jae Hyun1,Choi Jong Eun1,Kim Sung Yeol1ORCID

Affiliation:

1. Department of Mechanical Engineering Kyungpook National University Daegu 41566 Republic of Korea

Abstract

Quantifying and analyzing the stress of the battery system at different levels are important for ensuring battery stability and performance. Herein, a three‐dimensional multiparticle model to evaluate the stress generated within the active material particles of battery due to the particle–particle and particle–binder interactions is developed. Variations in binder conditions, such as binder distribution, thickness, and radius, as well as Young's modulus, are introduced to investigate their effects on the mechanical stress of graphite particles in the battery. Herein, it is demonstrated that larger binder distributions, lower thicknesses, and smaller Young's moduli and radii reduce the maximum particle stress of graphite. Moreover, smaller binder distributions and Young's moduli along with larger thicknesses and radii reduce the maximum and average binder stress values. The interfaces between the particle–particle and particle–current collector are the typical maximum stress locations. The average stress data obtained are applied at the electrode level for comparison with the experimental stress value. The experimental and the model average stresses are comparable, indicating the credibility of our model. These findings have considerable implications for minimizing the mechanical stress and probability of electrode fracture in the battery electrode operation and fabrication processes.

Funder

Ministry of Education

Korea Institute of Energy Technology Evaluation and Planning

Publisher

Wiley

Subject

General Energy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3