Theoretical Insights of Degenerate ZrS2 as a New Buffer for Highly Efficient Emerging Thin‐Film Solar Cells

Author:

Arockiya-Dass Kaviya Tracy1ORCID,Sekar Karthick2ORCID,Marasamy Latha1ORCID

Affiliation:

1. Facultad de Química Materiales-Energía Universidad Autónoma de Querétaro Santiago de Querétaro Querétaro C.P.76010 México

2. GREMAN UMR 7347 Université de Tours, CNRS INSA Centre Val de Loire 37071 Tours France

Abstract

SnS, Sb2Se3, Cu2SnS3, CuSb(S,Se)2, and Cu2BaSn(S,Se)4 are emerging as promising light absorbers for thin‐film photovoltaics due to their extraordinary optoelectronic properties. However, improper band alignment with the buffer and large open‐circuit voltage (VOC) deficit limits their power conversion efficiencies (PCE). Therefore, finding a suitable buffer that overcomes these obstacles is crucial. Herein, ZrS2 as an alternative buffer for the aforementioned emerging thin‐film solar cells using SCAPS‐1D is proposed. The important ZrS2 parameters are optimized, including bandgap, thickness, carrier concentration, and defect density. Interestingly, ZrS2 behaves as a degenerate semiconductor at carrier concentrations >1E17 cm−3, improving the conductivity of the solar cells; it also demonstrates a high defect tolerance nature when the defect density lies between 1E12 and 1E18 cm−3. After ZrS2 parameters optimization, the built‐in potential of SnS, Sb2Se3, Cu2SnS3, CuSb(S,Se)2, and Cu2BaSn(S,Se)4 solar cells is enhanced by 0.2, 0.58, 0.05, 0.42, and 0.3 V, respectively, reducing recombination rate. Upon optimizing absorbers parameters, a PCE > 35% for SnS, Sb2Se3, and CuSb(S,Se)2 while >32% for Cu2SnS3 and Cu2BaSn(S,Se)4 solar cells is accomplished with low VOC loss (≈0.1 V). The absorbers must have high carrier concentration (1E20 cm−3) and low defect density (1E14 cm−3) to achieve these PCEs.

Publisher

Wiley

Subject

General Energy

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3