Prediction of Remaining Useful Life for Lithium‐Ion Batteries Using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise for Feature Analysis, and Bidirectional Long Short‐Term Memory Coupled with a Gaussian Process Regression Model

Author:

Zheng Di1,Man Shuo1ORCID,Ning Yi1,Guo Xifeng1,Zhang Ye1

Affiliation:

1. School of Electrical and Control Engineering Shenyang Jianzhu University Shenyang Liaoning 110168 China

Abstract

Accurately predicting the remaining useful life (RUL) of lithium‐ion batteries is a challenging task, with significant implications for managing battery usage risks and ensuring equipment stability. However, the phenomenon of capacity regeneration and the lack of confidence interval expression result in imprecise predictions. To tackle these challenges, this article proposes a novel method for predicting RUL by optimizing health features (HFs) and integrating multiple models. First, multiple HFs are collected from the charging curves, and the fusion HF is optimized by kernel principal component analysis. To eliminate local fluctuations caused by capacity regeneration effects, the complete ensemble empirical mode decomposition with adaptive noise is employed to decompose the fusion HF. Second, to address the issue of lacking confidence interval expression, a hybrid model is proposed by integrating bidirectional long short‐term memory neural network with Gaussian process regression for effectively capturing the lithium‐ion battery capacity‐declining trend and accurately predicting the RUL. Finally, the proposed model's effectiveness is validated by comparing it with several other models using National Aeronautics and Space Administration and Center for Advanced Life Cycle Engineering datasets. The results indicate that this model achieves a root mean square error of 0.0023 and a mean absolute error of 0.0058, demonstrating significant improvements in predictive accuracy for RUL with high reliability.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3