Recent Advances in Poly(3‐hexylthiophene) and Its Applications in Perovskite Solar Cells

Author:

Kassem Hassan1,Salehi Alireza1,Kahrizi Mojtaba2

Affiliation:

1. Faculty of Electrical and Computer Engineering K. N. Toosi University of Technology Tehran 1631714191 Islamic Republic of Iran

2. Department of Electrical and Computer Engineering Concordia University Montreal Quebec H3G 1M8 Canada

Abstract

2,2',7,7'‐Tetrakis(N,N‐di‐p‐methoxyphenylamine)‐9,9'‐spirobifluorene (Spiro‐OMeTAD) is considered the backbone of high performance in perovskite solar cells (PSCs) with the highest recorded power conversion efficiency near 26%. Devices with Spiro‐OMeTAD as a hole‐transport material (HTM) inherit very low stability due to the use of ionic‐based and unstable hygroscopic dopants to boost their hole mobility, hindering their stability. Poly(3‐hexylthiophene) (P3HT) is considered one of the promising HTM candidates, due to its formidable physical and electronic properties including higher hole mobility and thermal and moisture‐resisting nature. Despite these advantages, pristine P3HT‐based PSCs suffer low photovoltaic performances owing to unmatched perovskite/hole‐transport layer (HTL) interface and low mobility compared to doped HTMs. Today, studies are focusing on how to manage the interface between perovskite and P3HT and improve its hole mobility to achieve significant performance records in n–i–p PSCs. Herein, the advances of P3HT HTL are reviewed and light is shed on its different related approaches. Doping strategies and structural and molecular modifications to boost the hole mobility are reviewed. Interface engineering approaches to enhance the contact between perovskite and P3HT are discussed in detail. Moreover, incorporation in future PSC applications is investigated. Finally, a summary and a short outlook are provided.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3