Metal‐Free Organic Dyes for NiO‐Based Dye‐Sensitized Solar Cells: Recent Developments and Future Perspectives

Author:

Naik Praveen1ORCID,Elias Liju2ORCID,Keremane Kavya S.3ORCID,Babu Dickson D.4ORCID,Abdellah Islam M.56ORCID

Affiliation:

1. Department of Chemistry Nitte Meenakshi Institute of Technology Yelahanka Bengaluru Karnataka 560064 India

2. Department of Chemistry University of Kerala Kariavattom Campus Thiruvananthapuram Kerala 695581 India

3. Materials Research Institute The Pennsylvania State University University Park PA 16802 USA

4. Department of Chemistry St. Thomas College Kozhencherry Kerala 689641 India

5. Polymer and Color Chemistry Program North Carolina State University Raleigh NC 27606 USA

6. Department of Chemistry Faculty of Science Aswan University Aswan 81528 Egypt

Abstract

The increasing global demand for energy and growing environmental concerns emphasize the crucial role of solar energy as a sustainable and nondepletable resource. Solar cells, particularly dye‐sensitized solar cells (DSSCs), have gained prominence due to their efficient conversion of solar power, ecofriendly manufacturing processes, and noteworthy stability. Current research in sustainable energy focuses on transitioning from metal‐based to metal‐free organic materials. Tandem solar cells, combining n‐type and p‐type semiconductors sensitized with diverse photoactive dyes, show potential to surpass thermodynamic limits in photon conversion efficiency. Notably, the exploration of n‐type DSSCs as photoanodes in tandem architectures is promising. However, the absence of efficient p‐type photoactive cathodes remains a significant obstacle. Global research efforts are dedicated to addressing charge recombination issues in NiO‐based devices to enhance the efficiency of p‐type DSSCs. The success of any DSSC hinges on the selection of dyes/sensitizers with suitable anchoring groups, wide absorption in the visible–NIR region, and a high extinction coefficient. This article comprehensively reviews advancements in developing highly efficient p‐type sensitizers, emphasizing their pivotal role in unlocking the full potential of tandem solar cells.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3