Adaptive Joint Multiobjective Operating Parameters’ Optimization for Active Direct Methanol Fuel Cells

Author:

Zhang Dacheng12,Liu Yuhang1,Zhao Zhengang12ORCID

Affiliation:

1. Faculty of Information Engineering and Automation Kunming University of Science and Technology Kunming 650500 China

2. Yunnan Key Laboratory of Green Energy Electric Power Measurement Digitalization, Control and Protection Kunming 650500 China

Abstract

The operating parameters of the active direct methanol fuel cell (DMFC) are essential factors affecting its power delivery performance. Different operating parameters lead to variations in the amount of methanol crossover in a DMFC, which might cause overpotential and cathode catalyst poisoning. Due to the complexity of the DMFC system, changes in operating conditions, and correlations among these parameters, it is challenging to maintain output power density while reducing the negative effects of methanol crossover. This paper proposes an adaptive joint optimization method for fuel cell operating parameters. The principle operating parameters are selected by the orthogonal tests, which include an adaptive numerical simulation and multiobjective optimization regarding cell output power density and methanol crossover. The selected parameter combinations are verified by an evaluation model that quantifies the influences of operating parameters on the active DMFC power density and its methanol crossover, where the nonlinear mapping function for the two optimization objectives is obtained. The nondominated sorting genetic algorithm‐II (NSGA‐II) is applied to rapidly obtain the optimal combination. The results show that with the optimal parameters, the maximum power density is increased by 16.7% and the methanol crossover is reduced by 35.1%.

Publisher

Wiley

Subject

General Energy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3