Aqueous Zinc Metal Batteries with Anode Stabilized by Plasma Treatment

Author:

Ming Fangwang1,Alshareef Ayman H.1,Mohammed Omar F.1ORCID

Affiliation:

1. Materials Science and Engineering King Abdullah University of Science and Technology (KAUST) Physical Science and Engineering Division Thuwal 23955‐6900 Saudi Arabia

Abstract

Aqueous Zn batteries have recently attracted significant attention due to the various benefits offered by Zn metal anodes. However, the formation of dendrites and unwanted side reactions between the Zn anode and the aqueous electrolyte remain challenging problems. Herein, a straightforward plasma treatment that converts the surface of the Zn metal into ZnF2 is proposed. Calculations using density function theory reveal that the diffusion energy barrier for Zn atoms on the ZnF2 surface (0.02 eV) is considerably lower than that on the regular Zn surface (0.25 eV). As a result, the Zn anode treated with plasma (referred to as Plasma‐Zn) exhibits a highly reversible Zn plating/stripping process and significantly suppresses dendrite formation for more than 1300 h. Furthermore, when combined with polyaniline (PANi)‐intercalated V2O5 in a full cell configuration (Plasma‐Zn//PANi‐intercalated V2O5), it demonstrates enhanced rate capability, delivering a discharge capacity of 258 mAh g−1 at 2000 mA g−1, along with improved long‐term stability, retaining 72% of its capacity after 1000 cycles at 1000 mA g−1.

Funder

King Abdullah University of Science and Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3