Fault Diagnosis and Fault‐Tolerant Control Method for a Multistack Fuel Cell Thermal Management Subsystem

Author:

Zhou Su1,Gao Jianhua1ORCID,Pan Zhirong1,Zhang Gang1,Zhai Shuang2,Shen Wei3

Affiliation:

1. School of Automotive Studies Tongji University Shanghai 201804 China

2. Shanghai Re-Fire Energy Technology Co., Ltd. Shanghai 201812 China

3. Shanghai TXJS Engineering Technology Co., Ltd. Shanghai 201804 China

Abstract

Multistack fuel cell systems (MFCS) are promising developments of fuel cell technology. For MFCS, faults affect durability and stability, and appropriate fault diagnosis methods and control strategies need to be proposed for different multistack structures. Herein, the integrated MFCS thermal management subsystem (TMS), which is based on the optimized split‐stack approach, is first studied, and its possible sensor and actuator faults are analyzed. The sensor fault signal is corrected based on the unscented Kalman filter (UKF), the controller design under the hardware in the loop platform is carried out, and an active fault‐tolerant control (FTC) strategy based on sliding mode control is deployed for the TMS to enable it to recover its performance quickly and effectively in case of faults. The results show that the estimated values are closer to the true values after using the UKF on the sensor signals, avoiding the impact of sensor faults on the system performance. Under New European Driving Cycle dynamic conditions, the FTC controller also exhibits better control compared to the conventional proportional–integral controller, with smaller maximum overshoot and shorter system recovery and stabilization time in the event of a TMS fault, mitigating the impact of system fault on performance.

Funder

Tongji University

Publisher

Wiley

Subject

General Energy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3