The Pitfalls of Deep Eutectic Solvents in the Recycling of Lithium‐Ion Batteries

Author:

Meles Neguse Samuel1,Yoon Songhak1ORCID,Lim Hyunjung1,Jang Jueun1,Baek Sungho1,Jöckel Dennis M.1,Widenmeyer Marc2,Balke‐Grünewald Benjamin1,Weidenkaff Anke12

Affiliation:

1. Energy Materials Fraunhofer Research Institution for Materials Recycling and Resource Strategies IWKS Aschaffenburger Straße 121 Hanau 63457 Germany

2. Department of Materials and Earth Sciences Materials and Resources Technical University of Darmstadt Peter‐Grünberg‐Straße 2 64287 Darmstadt Germany

Abstract

The exponentially increasing demand for lithium‐ion batteries and their limited lifetime lead to a significant increase in spent batteries. With the goal to address the sustainability and recyclability to minimize negative effects for the environment, an efficient process is vital to recover valuable materials from spent batteries by recycling. In this regard, deep eutectic solvents (DESs) have attracted huge interest, due to their unique ability to efficiently extract valuable metals from spent batteries, while also being rendered greener and more cost‐effective compared to current pyrometallurgy and/or hydrometallurgy. However, the DES approach also has its own set of challenges and drawbacks, which hinder the widespread use in the industry, including its restricted recyclability, high viscosity, low thermal and chemical stability, complex chemistry, as well as limited scalability. In this perspective, it is claimed that ongoing future research on the recycling of lithium‐ion batteries requires the exploration of alternative processes including modification of current hydrometallurgy processes, if the consistent improvements cannot be achieved in DES system for recycling valuable elements.

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3