Porous Thermoelectric Materials for Energy Conversion by Thermoelectrocatalysis

Author:

Wu Jiaqi1,Chen Kan2,Reece Michael J.2,Huang Zhaorong1ORCID

Affiliation:

1. Surface Engineering and Precision Centre Cranfield University Bedfordshire MK43 0AL UK

2. School of Engineering and Materials Science Queen Mary University of London Mile End Road London E1 4NS UK

Abstract

Novel uses of thermoelectric (TE) materials as catalyst and catalyst promoters have been reported recently for a variety of applications such as environmental gas mitigation, battery, and photoreduction of nuclear wastewater. TE Seebeck voltage is found to increase the catalytic activities by tens to hundreds of times, and this effect is termed thermoelectrocatalysis. In these uses, the TE materials are in an open‐circuit configuration, which is different from the usual closed‐circuit configuration in the TE energy generation and cooling devices. A new figure of merit defined as the Seebeck voltage per unit heat loss is proposed for the application of thermoelectrocatalysis. Techniques such as dense bulk porous surface and increased thickness of the TE materials are used for the optimization of the thermoelectrocatalysis of the oxyselenide BiCuSeO for the carbon dioxide hydrogenation reactions.

Funder

Engineering and Physical Sciences Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3