Nanofluid‐Cooled Microchannel‐Integrated Metal Foam/Phase Change Material Composite‐Based Li‐Ion Battery Pack Design

Author:

Kumar Kartik1,Sarkar Jahar1ORCID,Mondal Swasti Sundar1

Affiliation:

1. Department of Mechanical Engineering Indian Institute of Technology (B.H.U.) Varanasi UP 221005 India

Abstract

Hybrid cooling has emerged recently for lithium‐ion batteries, and proper pack design is essential for safe operation. Hence, this research explores a novel approach using wavy microchannels in phase change material (PCM) + aluminum foam packs for cylindrical batteries. A comparison between active cooling (microchannels in aluminum block) and hybrid cooling (microchannels in PCM block and foam‐PCM block) employing MXene + Al2O3/water hybrid nanofluid is made, followed by the impact of the number of microchannels and foam porosity on the cooling effectiveness. Findings indicate that the foam‐PCM yields significantly lower and (309.86 and 2.55 K, respectively) with seven microchannels at 3C discharge with porosity of 85% and pore density of 50 PPI. This also shows a better temperature distribution than other considered blocks. With the increase in porosity from 75% to 95%, there is an adverse effect on and within the cells, which increases from 309.75 to 310.24 K and 2.16 to 3.62 K, respectively. With the increase in microchannels from three to nine, the decreases from 310.04 to 309.72 K, while the increases from 2.05 to 2.85 K. The proposed pack (having moderate weight) yields superior thermal performance, and the enhanced battery life can justify the increased cost.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3