Affiliation:
1. Battery Cell Technology Department of Electrical Energy Storage Fraunhofer Institute for Solar Energy Systems ISE 79110 Freiburg Germany
2. Electrical Energy Storage Systems Institute for Photovoltaics (ipv) University of Stuttgart 70569 Stuttgart Germany
Abstract
For large‐scale energy‐storage systems, the aqueous rechargeable zinc–manganese dioxide battery (ARZMB) attracts increasing attention due to its excellent advantages such as high energy density, high safety, low material cost, and environmental friendliness. Still, the reaction mechanism and its influence on the electrolyte's pH are under debate. Herein, a pH buffer concept for ARZMB electrolytes is introduced. Selection criteria for pH buffer substances are defined. Different buffered electrolytes based on a zinc salt (ZnSO4, Zn(CH3COO)2, Zn(CHOO)2), and pH buffer substances (acetic acid, propionic acid, formic acid, citric acid, 4‐hydrobenzoic acid, potassium bisulfate, potassium dihydrogen citrate, and potassium hydrogen phthalate) are selected and compared to an unbuffered 2 m ZnSO4 reference electrolyte using titration, galvanostatic cycling with pH tracking, and cyclic voltammetry. By adding buffer substances, the pH changes can be reduced and controlled within the defined operating window, supporting the Mn2+/MnO2 deposition/dissolution mechanism. Furthermore, the potential plateau during discharge can be increased from ≈1.3 V (ZnSO4) to ≈1.7 V (ZnSO4 + AA) versus Zn/Zn2+ and the energy retention from ≈30% after 268 cycles (ZnSO4) to ≈86% after 494 cycles (ZnSO4 + AA). Herein, this work can serve as a basis for the targeted design of long‐term stable ARZMB electrolytes.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献