Exploring the connectivity between rhizosphere microbiomes and the plant genes: A way forward for sustainable increase in primary productivity

Author:

Fadiji Ayomide E.1,Barmukh Rutwik2,Varshney Rajeev K.2ORCID,Singh Brajesh K.13ORCID

Affiliation:

1. Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia

2. Centre for Crop and Food Innovation, Food Futures Institute Murdoch University Murdoch Western Australia Australia

3. Global Centre for Land‐Based Innovation Western Sydney University Penrith New South Wales Australia

Abstract

AbstractThe plant genome and its microbiome act together to enhance survival and promote host growth under various stresses. Plant microbiome plays an important role in plant productivity via a multitude of mechanisms including provision of nutrients and resistance against different biotic and abiotic factors. However, the molecular mechanisms responsible for plant microbiome interactions remain largely unknown. Nevertheless, gaining a deeper understanding of the plant genetic traits driving microbiome recruitments and assembly holds the potential to greatly enhance our capacity to utilize the microbiome effectively, leading to sustainable improvements in agricultural productivity and produce quality. This article explores the mutual influence of specific plant genes in modulating the rhizosphere (area around plant roots) microbiome, and how this rhizosphere microbiome impacts the plant genes, ultimately enhancing plant health and productivity. It further examines the effects of various rhizosphere microbiota, including Bacillus, Pseudomonas, Azospirillum, Trichoderma spp., on plant development, immunology and the expression of host functional genes. We conclude that the adoption of a hologenomics approach (i.e., considering both the plant genome and the genomes of all microorganisms colonizing the plant) can significantly advance our understanding of plant resistance and resilience to biotic and abiotic stresses. This approach can offer improved solutions for agronomic challenges in the future. Furthermore, within this context, we identify key knowledge gaps within the discipline and propose frameworks that may be employed in the future to harness plant–microbial interactions effectively, leading to a sustainable increase in farm productivity.

Funder

Australian Research Council

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3