Seasonality regulates the taxonomic and functional compositions of protists responding to climate warming in forest ecosystems

Author:

Li Fangfang1,Sun Anqi2,Liu Xiaofei1,Ren Peixin1,Wu Bing‐Xue1,Shen Ju‐Pei1,Bi Li3,He Ji‐Zheng3,Yang Yusheng1,Hu Hang‐Wei3ORCID

Affiliation:

1. State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, School of Geographical Sciences Fujian Normal University Fuzhou China

2. Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment Chinese Academy of Sciences Xiamen China

3. School of Agriculture, Food and Ecosystem Sciences, Faculty of Science The University of Melbourne Parkville Australia

Abstract

AbstractIntroductionProtists are unicellular eukaryotes including important predators, parasites and phototrophs, and play pivotal roles in organic matter decomposition, biogeochemical nutrient cycling and various ecosystem functions. Unravelling the impact of climate warming on soil protists is paramount in predicting how these microorganisms will continue to provide essential ecosystem services in the face of changing climatic conditions.Materials and MethodsWe examined the effects of 5‐year simulated climate warming scenario, with temperatures increased by 4°C above ambient levels, on the diversity and community composition of soil protists, as well as their interactions with other microorganisms in both natural and plantation forest ecosystems during three seasons: summer, autumn and winter.ResultsWe found a season‐dependent response of protists to climate warming, with a significant decrease in protist diversity during winter in natural forests. Furthermore, we identified significant alterations in the community compositions of protists during summer in both natural and plantation forests, as well as during winter in both forest types, under warming. Our analysis pinpointed specific functional protist taxa, such as consumers, parasites and phototrophs, which exhibited significant shifts in their relative abundances under warming. Additionally, we found that warming facilitated trophic interactions between protists and bacteria, while also strengthening interactions between bacterial and fungal communities. Warming could induce direct modifications in protist community compositions or indirectly affect them by modifying bacterial and fungal communities, as revealed by structural equation modelling.ConclusionThese findings demonstrate the substantial impact of warming on the taxonomic and functional compositions of protists in forest ecosystems, with the magnitude of these effects varying across seasons. Our study implicates that ongoing climate warming could have significant consequences for the profiles of soil protists, as well as their trophic interactions with bacteria and fungi, highlighting the importance of considering these effects for the sustainable provision of ecosystem functions.

Funder

Australian Research Council

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3