Functional redundancy across space and time in litter‐degrading fungal communities

Author:

Bao Yuanyuan1ORCID,Dolfing Jan2,Li Xin1,Chen Ruirui1,Cui Xiaodan3,Li Zhongpei4,Lin Xiangui4,Feng Youzhi145ORCID

Affiliation:

1. Jiangsu Co‐innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing PR China

2. Faculty of Engineering and Environment Northumbria University Newcastle upon Tyne UK

3. Technology Innovation Center for Ecological Monitoring & Restoration Project on Land (Arable), Ministry of Natural Resources Geological Survey of Jiangsu Province Nanjing PR China

4. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences Nanjing PR China

5. Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization Nanjing PR China

Abstract

AbstractIntroductionMicrobial‐driven litter decomposition contributes significantly to global carbon (C) turnover. Fungi play central roles in the degradation process due to their ability to hydrolyse recalcitrant litter components. The spatiotemporal variations in taxonomic composition of litter‐degrading fungi have been well documented. However, associated variations in litter‐degradation‐related functional composition of fungal communities remain unexplored.Materials and MethodsIn this study, a 16‐week field‐based buried rice straw experiment was conducted at three experimental sites across subtropical China in combination with laboratory 13C‐straw‐based DNA stable‐isotope probing (DNA‐SIP) microcosm experiments. Amplicon sequencing combined with shotgun metagenomic sequencing were the approaches of choice.ResultsThe field experiment showed that the taxonomic composition of the straw‐degrading fungal community was highly variable while the functional composition was rather stable. The higher permutational multivariate analysis of variation F scores (20.904−48.660) and the steeper slopes (1.92 E‐04−4.15E‐04) of the distance decay relationship for taxonomic composition than for function across periods (with lower F scores = 7.047−21.601 and gradual slopes = −1.33 E‐05 to −1.03E‐04) both indicated that the spatiotemporal patterns of functional composition in litter‐degrading fungi community were more conserved. The laboratory DNA‐SIP confirmed the field observations and showed that the conserved functional composition in litter‐degrading fungi was underpinned by a high functional redundancy of Basidiomycota.ConclusionFunction and taxonomy of litter‐degrading fungi were decoupled. The functional composition of the litter‐degrading fungal community was highly conserved in space and time, the taxonomic composition less so. The main drivers behind the observed taxonomic decoupling are probably/most likely functional redundancy and metabolic niche selection resulting in conservation of function, with changing environmental conditions and dispersal limitation drove the observed high taxonomic turnover of the community over the course of the litter degradation progression. Our study provides valuable insights in the ecology of fungi and their roles in in global C sequestration for ecosystem sustainable development.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3