Integrative analysis of genome‐wide association study and transcriptomics to identify potential candidate genes influencing drip loss in Beijing Black pigs

Author:

Gao Hongmei1,Tian Jingjing1,Zhang Run1,Liu Xiance2,Liu Hai2,Zhao Fuping1ORCID,Xue Zhenhua3,Wang Lixian1,Jing Xitao2,Zhang Longchao1ORCID

Affiliation:

1. Institute of Animal Science Chinese Academy of Agricultural Sciences Beijing China

2. Beijing Heiliu Animal Husbandry Technology Co, Ltd Beijing China

3. The Municipal Animal Husbandry General Station of Beijing Beijing China

Abstract

AbstractUnderstanding the genetic factors related to meat drip loss is of great importance for animal breeding and production. In this study, we employed a combination of genome‐wide association study (GWAS) mapping and RNA sequencing (RNA‐seq) data to effectively identify potentially functional single nucleotide polymorphisms (SNPs) as well as candidate genes associated with drip loss (DL) in Beijing Black pigs. Initially, we conducted a single‐ and multi‐trait GWAS on drip loss traits in 441 Beijing Black pigs at 24 (DL24) and 48 (DL48) hours postmortem using the Illumina pig 50K SNP chip. Five SNPs with annotations for four genes (FGGY, LHFPL6, OSBPL1A, and NMNAT3) were consistently identified in single or multiple trait GWAS results, indicating their potential pleiotropic effects on drip loss. Next, a comprehensive comparative transcriptomic analysis was performed on samples of Beijing Black pigs exhibiting extremely high and low drip loss, resulting in the identification of 21 differentially expressed genes (DGEs) as potential candidates. Additionally, protein–protein interaction (PPI) network analysis revealed reciprocal regulatory relationships between FOXO1, OSBPL1A, DOCK1 (identified from GWAS) and the candidate DGEs obtained from RNA‐seq data. Therefore, we propose that these genes may impact drip loss traits through gene interactions. In conclusion, our integrative analysis screened candidate genes that may affect the drip loss traits in Beijing Black pigs, which provides crucial insights into the molecular mechanisms of drip loss and serves as a theoretical reference for improving meat quality in Beijing Black pigs.

Funder

National Swine Industry Technology System

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3