Classification of multiple sclerosis women with voiding dysfunction using machine learning: Is functional connectivity or structural connectivity a better predictor?

Author:

Tran Khue1ORCID,Salazar Betsy H.2,Boone Timothy B.2,Khavari Rose2,Karmonik Christof3ORCID

Affiliation:

1. EnMed Program Texas A&M School of Engineering Medicine Houston Texas USA

2. Department of Urology Houston Methodist Hospital Houston Texas USA

3. Translational Imaging Center Houston Methodist Research Institute Houston Texas USA

Abstract

AbstractIntroductionMachine learning (ML) is an established technique that uses sets of training data to develop algorithms and perform data classification without using human intervention/supervision. This study aims to determine how functional and anatomical brain connectivity (FC and SC) data can be used to classify voiding dysfunction (VD) in female MS patients using ML.MethodsTwenty‐seven ambulatory MS individuals with lower urinary tract dysfunction were recruited and divided into two groups (Group 1: voiders [V, n = 14]; Group 2: VD [n = 13]). All patients underwent concurrent functional MRI/urodynamics testing.ResultsBest‐performing ML algorithms, with highest area under the curve (AUC), were partial least squares (PLS, AUC = 0.86) using FC alone and random forest (RF) when using SC alone (AUC = 0.93) and combined (AUC = 0.96) as inputs. Our results show 10 predictors with the highest AUC values were associated with FC, indicating that although white matter was affected, new connections may have formed to preserve voiding initiation.ConclusionsMS patients with and without VD exhibit distinct brain connectivity patterns when performing a voiding task. Our results demonstrate FC (grey matter) is of higher importance than SC (white matter) for this classification. Knowledge of these centres may help us further phenotype patients to appropriate centrally focused treatments in the future.

Funder

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

Wiley

Subject

Religious studies,Cultural Studies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3