Altered habenular connectivity in chronic low back pain: An fMRI and machine learning study

Author:

Mao Cui Ping1ORCID,Wu Yue2,Yang Hua Juan1,Qin Jie1,Song Qi Chun1,Zhang Bo1,Zhou Xiao Qian1,Zhang Liang2,Sun Hong Hong1

Affiliation:

1. Department of Medical Imaging Second Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi China

2. School of Computer Science and Engineering Xidian University Xi'an Shaanxi China

Abstract

AbstractThe habenula has been implicated in the pathogenesis of pain and analgesia, while evidence concerning its function in chronic low back pain (cLBP) is sparse. This study aims to investigate the resting‐state functional connectivity (rsFC) and effective connectivity of the habenula in 52 patients with cLBP and 52 healthy controls (HCs) and assess the feasibility of distinguishing cLBP from HCs based on connectivity by machine learning methods. Our results indicated significantly enhanced rsFC of the habenula‐left superior frontal cortex (SFC), habenula‐right thalamus, and habenula‐bilateral insular pathways as well as decreased rsFC of the habenula‐pons pathway in cLBP patients compared to HCs. Dynamic causal modelling revealed significantly enhanced effective connectivity from the right thalamus to right habenula in cLBP patients compared with HCs. RsFC of the habenula‐SFC was positively correlated with pain intensities and Hamilton Depression scores in the cLBP group. RsFC of the habenula‐right insula was negatively correlated with pain duration in the cLBP group. Additionally, the combination of the rsFC of the habenula‐SFC, habenula‐thalamus, and habenula‐pons pathways could reliably distinguish cLBP patients from HCs with an accuracy of 75.9% by support vector machine, which was validated in an independent cohort (N = 68, accuracy = 68.8%, p = .001). Linear regression and random forest could also distinguish cLBP and HCs in the independent cohort (accuracy = 73.9 and 55.9%, respectively). Overall, these findings provide evidence that cLBP may be associated with abnormal rsFC and effective connectivity of the habenula, and highlight the promise of machine learning in chronic pain discrimination.

Funder

China Scholarship Council

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Publisher

Wiley

Subject

Neurology (clinical),Neurology,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3