Practical challenges in data‐driven interpolation: Dealing with noise, enforcing stability, and computing realizations

Author:

Aumann Quirin1ORCID,Gosea Ion Victor1

Affiliation:

1. Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg Germany

Abstract

SummaryIn this contribution, we propose a detailed study of interpolation‐based data‐driven methods that are of relevance in the model reduction and also in the systems and control communities. The data are given by samples of the transfer function of the underlying (unknown) model, that is, we analyze frequency‐response data. We also propose novel approaches that combine some of the main attributes of the established methods, for addressing particular issues. This includes placing poles and hence, enforcing stability of reduced‐order models, robustness to noisy or perturbed data, and switching from different rational function representations. We mention here the classical state‐space format and also various barycentric representations of the fitted rational interpolants. We show that the newly‐developed approaches yield, in some cases, superior numerical results, when comparing to the established methods. The numerical results include a thorough analysis of various aspects related to approximation errors, choice of interpolation points, or placing dominant poles, which are tested on some benchmark models and data‐sets.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3